Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
Xu Chen,
Bin Xu,
Congli Mei,
Yuhan Ding and
Kangji Li
Applied Energy, 2018, vol. 212, issue C, 1578-1588
Abstract:
Parameters estimation of photovoltaic (PV) model based on experimental data plays an important role in the simulation, evaluation, control, and optimization of PV systems. In the past decade, many metaheuristic algorithms have been used to extract the PV parameters; however, developing hybrid algorithms based on two or more metaheuristic algorithms may further improve the accuracy and reliability of single metaheuristic algorithms. In this paper, by combining teaching-learning-based optimization (TLBO) and artificial bee colony (ABC), we propose a new hybrid teaching-learning-based artificial bee colony (TLABC) for the solar PV parameter estimation problems. The proposed TLABC employs three hybrid search phases, namely teaching-based employed bee phase, learning-based on looker bee phase, and generalized oppositional scout bee phase to efficiently search the optimization parameters. TLABC is applied to identify parameters of different PV models, including single diode, double diode, and PV module, and the results of TLABC are compared with well-established TLBO and ABC algorithms, as well as those results reported in the literature. Experimental results show that TLABC can achieve superior performance in terms of accuracy and reliability for different PV parameter estimation problems.
Keywords: Photovoltaic parameter estimation; Metaheuristic algorithm; Teaching-learning-based optimization; Artificial bee colony; Hybridization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917318391
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:1578-1588
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.115
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().