Economics at your fingertips  

Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis

Jufeng Yang, Bing Xia, Wenxin Huang, Yuhong Fu and Chris Mi

Applied Energy, 2018, vol. 212, issue C, 1589-1600

Abstract: Battery state-of-health (SoH) estimation is a critical function in a well-designed battery management system (BMS). In this paper, the battery SoH is detected based on the dynamic characteristic of the charging current during the constant-voltage (CV) period. Firstly, according to the preliminary analysis of the battery test data, the time constant of CV charging current is proved to be a robust characteristic parameter related to the battery aging. Secondly, the detailed expression of the current time constant is derived based on the first order equivalent circuit model (ECM). Thirdly, the quantitative correlation between the normalized battery capacity and the current time constant is established to indicate the battery SoH. Specifically, for the uncompleted CV charging process, the logarithmic function-based current time constant prediction model and the reference correlation curve are established to identify the battery capacity fading. At last, experimental results showed that regardless of the adopted data size, the correlation identified from one battery can be used to indicate the SoH of other three batteries within 2.5% error bound except a few outliers.

Keywords: Lithium-ion battery; State-of-health (SoH); Constant-current constant-voltage (CCCV) charge; Equivalent circuit model (ECM); Current time constant (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-07-28
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:1589-1600