Transient response of a thermoelectric generator to load steps under constant heat flux
Marcos Compadre Torrecilla,
Andrea Montecucco,
Jonathan Siviter,
Andrew Strain and
Andrew R. Knox
Applied Energy, 2018, vol. 212, issue C, 293-303
Abstract:
Most waste heat recovery applications involve a heat source that provides a limited heat flux that can be converted into electricity by a thermoelectric generator (TEG). When a TEG is used under limited or constant heat flux conditions the temperature difference across the device cannot be considered constant and will change depending on the electrical current generated by the TEG. This phenomenon is induced by the Peltier effect, which works against power generation and deviates the optimum operating point from the commonly known maximum power point (MPP). This point, dictated by the maximum power transfer theorem, is achieved when the source equivalent series resistance and the load resistance are equal, in conditions of constant temperature difference. Hence maximum power point tracking (MPPT) algorithms that regulate the TEG at half of the instantaneous open-circuit voltage are optimized only for applications where the TEG operates under constant temperature difference but are not ideal for constant heat flux conditions. Hill climbing MPPT methods, e.g., perturb-and-observe (P&O) or incremental conductance (IC), can reach the MPP more accurately if the sampling time is extended to the thermal time constant of the system.
Keywords: Thermoelectric; MPPT; Constant heat; Transient response; Seebeck; Peltier (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317233
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:293-303
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.010
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().