EconPapers    
Economics at your fingertips  
 

Assessing compressibility effects on the performance of large horizontal-axis wind turbines

Chi Yan and Cristina L. Archer

Applied Energy, 2018, vol. 212, issue C, 33-45

Abstract: The tips of large horizontal-axis wind turbines can easily reach high speeds, thus raising the concern that compressibility effects may influence turbine wakes and ultimately power production. All past studies have assumed that these effects are negligible. Compressibility effects are assessed here in terms of blade aerodynamic properties and variable density separately. Using the Blade Element Momentum (BEM) method, we find that under normal operating conditions (i.e., wind speed <∼15 m s−1 and tip speed ratio TSR <∼12) aerodynamic corrections to the lift and drag coefficients of the blades have a minimal impact, thus the incompressible coefficients are adequate. To assess the variable-density effects, numerical simulations of a single turbine and two aligned turbines, modeled via the actuator line model with the default aerodynamic coefficients, are conducted using both the traditional incompressible and a compressible framework. The flow field around the single turbine and its power performance are affected by compressibility and both show a strong dependency on TSR. Wind speed and turbulent kinetic energy (TKE) differences between compressible and incompressible results origin from the rotor tip region but then impact the entire wind turbine wake. Power production is lower by 8% under normal operating conditions (TSR ∼ 8) and 20% lower for TSR ∼ 12 due to compressibility effects. When a second turbine is added, the front turbine experiences similar effects as the single-turbine case, but TKE differences are enhanced while wind speed differences are reduced after the second turbine in the overlapping wakes. These findings suggest that compressibility effects play a more important role than previously thought on power production and, due to the acceptable additional computational cost of the compressible simulations, should be taken into account in future wind farm studies.

Keywords: Wind turbine; Computational fluid dynamics; Incompressible; Compressible; Blade element; Actuator line model; Wind power (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317348
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:33-45

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.020

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:33-45