EconPapers    
Economics at your fingertips  
 

Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion

Yanlei Xiang, Lei Cai, Yanwen Guan, Wenbin Liu, Yixiao Han and Ying Liang

Applied Energy, 2018, vol. 212, issue C, 465-477

Abstract: With the increasing demand of energy and urgent need of CO2 emissions reduction, seeking for an approach to achieve carbon capture in a power generation system with high efficiency is a great challenge. Natural gas combined cycle (NGCC) power plants with high power generation efficiency have attracted more and more attention. Oxy-fuel combustion is considered one of the most potential methods for carbon capture in power plants. An integrated system of NGCC and oxy-fuel combustion is proposed to realize the carbon capture in the work. The cold energy of liquefied natural gas (LNG) is utilized to condense CO2 with high efficiency. The simulation of the system is conducted using Aspen Plus. Five kinds of bottom cycle: single pressure (SP) cycle, dual pressure non-reheat (DPN) cycle, dual pressure reheat (DP) cycle, triple pressure non-reheat (TPN) cycle and triple pressure reheat (TP) cycle are established. The oxy-fuel combustion systems considering CO2 and H2O as dilute gas are investigated. The result shows that H2O is not suitable to moderate the combustion temperature in the study case because the latent heat of the flue gas is difficult to release. The efficiency of TP steam cycle is the highest among five kinds of bottom cycle. Taking the power consumption of carbon capture and O2 production into account, the energy and exergy efficiency of the system with the TP steam cycle is 55.3% and 52.9% respectively. The sensitivity analysis is carried out to study the effects of the flow rate of recycled CO2 and carbon capture pressure on system performance. The results show that with the increase of the amount of recycled CO2, the system power generation decreases. As the CO2 capture pressure increases, the carbon capture rate is elevated, while the CO2 purity drops.

Keywords: NGCC; Oxy-fuel combustion; Carbon capture; LNG; Bottom cycle; Efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317646
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:465-477

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:465-477