EconPapers    
Economics at your fingertips  
 

Thermodynamic modeling of solarized microturbine for combined heat and power applications

James Nelson, Nathan G. Johnson, Pinchas Doron and Ellen B. Stechel

Applied Energy, 2018, vol. 212, issue C, 592-606

Abstract: Combined heat and power (CHP) plants utilize exhaust heat from thermal-based power generators to increase system efficiency beyond electrical efficiency alone. Many existing CHP systems use fossil-fueled generators to create electrical power for retail sale or on-site industrial or commercial uses. This study develops, validates, and exercises a quasi-steady state thermodynamic model of a 100 kWe/165 kWt rated microturbine that has been coupled with a concentrating solar power (CSP) tower to offset natural gas consumption. Exhaust heat is rejected at approximately 270 °C for CHP applications. Governing equations developed for eight components incorporate manufacturer data and empirical data to describe system-level operation with respect to intraday variation in the solar resource. Model validation at ISO conditions shows electric output of the simulated system is within 1.6% of the as-built system. Simulation results of the complete solarized system gave 31.5% electrical efficiency, 83.2% system efficiency, 99.5 kWe electrical power, and 163.5 kWt thermal power at nominal operating conditions for a DNI of 515 W/m2. The thermodynamic model is exercised under rated electrical load (base loading) and variable electrical load (load following) conditions with performance measured on 13 operating characteristics. Sensitivity analyses evaluate changes in performance with respect to operating variables (e.g., turbine inlet temperature) and environmental variables (e.g., elevation). Results show that a CSP plant with solarized microturbine can meet target performance specifications of a non-solarized microturbine (pure natural gas). Annual time series simulations completed for Phoenix, Arizona, USA indicate a solarized microturbine can reduce natural gas use by 26.0% and 28.4% when supplying rated power and variable power output, respectively. Annual operating time of the solarized microturbine at rated capacity included 59.8% fuel only, 12.4% hybrid, and 27.8% solar only modes for the selected study location.

Keywords: Brayton cycle; Combined heat and power; Concentrating solar power; Solarized microturbine; Thermodynamic model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917317282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:592-606

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.015

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:592-606