Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting
Daniel J. Noelle,
Meng Wang,
Anh V. Le,
Yang Shi and
Yu Qiao
Applied Energy, 2018, vol. 212, issue C, 796-808
Abstract:
Internal resistance and temperature measurements are made for LIR2450 format LiCoO2/graphite 120 mA h coin cells upon abusive discharge conditions. The dynamic contributions of electrical and ionic resistances to joule heat generation are investigated in the earliest stages of battery failure. It is shown that while ohmic, primarily electrical resistances initially dictate the joule heating rates, polarization, primarily ionic resistances become dominant as time progresses. Ionic conductivity and resistance of LiPF6 salt in ethylene carbonate/ethyl methyl carbonate solvent are examined through concurrent concentration, viscosity, and temperature measurements to elucidate the intricacies of electrolyte polarization. Comparative analysis suggests that upon polarization at high discharge rates, resistance is concentrated in the electrolyte within the cathode region due to rapid depletion of lithium-ions available to facilitate charge transfer. Expected consequences are corroborated in external shorting and nail penetration experiments. The findings are used to predict how a cell would respond if electrical or ionic resistances are exacerbated upon shorting, so as to identify effective thermal runaway mitigation strategies.
Keywords: Lithium-ion battery; Thermal runaway; Safety; Short circuit; Resistance; Polarization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917318093
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:796-808
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.086
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().