A social cost benefit analysis of grid-scale electrical energy storage projects: A case study
Arjan S. Sidhu,
Michael Pollitt and
Karim Anaya
Applied Energy, 2018, vol. 212, issue C, 894 pages
Abstract:
This study explores and quantifies the social costs and benefits of grid-scale electrical energy storage (EES) projects in Great Britain. The case study for this paper is the Smarter Network Storage project, a 6 MW/10 MWh lithium battery placed at the Leighton Buzzard Primary substation to meet growing local peak demand requirements. This study analyses both the locational and system-wide benefits to grid-scale EES, determines the realistic combination of those social benefits, and juxtaposes them against the social costs across the useful lifecycle of the battery to determine the techno-economic performance. Risk and uncertainty from the benefit streams, cost elements, battery lifespan, and discount rate are incorporated into a Monte Carlo simulation. Using this framework, society can be guided to cost-effectively invest in EES as a grid modernization asset to facilitate the transition to a reliable, affordable, and clean power system.
Keywords: Electrical energy storage; Battery; Social cost benefit analysis (search for similar items in EconPapers)
JEL-codes: D61 L94 L98 Q48 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917318068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:881-894
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.085
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().