Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems
Jun Hou,
Jing Sun and
Heath Hofmann
Applied Energy, 2018, vol. 212, issue C, 919-930
Abstract:
Current trends in both commercial and military ship development have focused on ship electrification. A challenge for electric-ship propulsion systems, however, is large propulsion-load fluctuations. To address this issue, this paper explores a new solution, namely a combined battery and flywheel (B/FW) hybrid energy storage system (HESS) as a buffer to isolate load fluctuations from the shipboard network. Our two main objectives, power-fluctuation compensation and energy saving under various operating constraints, are formulated as a multi-objective optimization problem. Pareto fronts, which illustrate the trade-offs between the main objectives, are obtained by using dynamic programming with the weighted sum method. To quantitatively analyze the performance of B/FW HESS, a comparative study is performed under different sea conditions, where a battery/ultra-capacitor (B/UC) HESS configuration is used as a reference in performance evaluation. Simulation results show the feasibility and effectiveness of B/FW to mitigate the load fluctuations for all-electric ships, especially at high sea states. Furthermore, a model predictive control (MPC) algorithm is developed to facilitate real-time implementation of the proposed solution. A performance comparison between the proposed MPC energy management strategy and the global dynamic programming is performed, and this comparison demonstrates the effectiveness of the proposed MPC strategy.
Keywords: Electric ship propulsion; Hybrid energy storage; Multi-objective optimization; Model predictive control; Energy management; Dynamic programming (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917318214
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:919-930
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.098
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().