EconPapers    
Economics at your fingertips  
 

Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms

Zhao Sun, Shiyi Chen, Christopher K. Russell, Jun Hu, Asif H. Rony, Gang Tan, Aimin Chen, Lunbo Duan, John Boman, Jinke Tang, TeYu Chien, Maohong Fan and Wenguo Xiang

Applied Energy, 2018, vol. 212, issue C, 943 pages

Abstract: The objective of this research was to find cost-effective inner-looping redox-reaction-based biomass conversion catalysts by screening five Fe-containing materials through the integration of pine wood pyrolysis and gasification. All the evaluation tests are conducted in a fixed bed reactor under atmospheric pressure. The effect of temperature, water injection rate (steam/biomass ratio), catalyst loading, and reaction time on pine wood conversion performances was investigated. Ca2Fe2O5 catalyst was found to facilitate H2-rich gas production, tar abatement, and carbon conversion. The maximum H2 yield of 7.12 mol·H2/kg·Biomass was obtained in the first 10 min of gasification, which increased H2 yield by 78.98% compared to biomass gasification under the water injection rate of 0.10 mL/min and catalyst load amount of 10 wt.% at 850 °C. Moreover, the hydrogen utilization, carbon conversion, and total gas yield of the process due to the use of Ca2Fe2O5 increase by 13.4%, 17.3%, and 11.7%, respectively. Continuous high yields of H2-enriched syngas were observed during the cyclic stability tests, indicating significant activity and redox durability of Ca2Fe2O5. The catalyst characterization using BET, XRD, H2-TPR, SEM/EDS, and TEM revealed that Ca2Fe2O5 is stable when tested cyclically, which results from the existence of Ca2+ in Ca2Fe2O5. The bi-functional Ca2Fe2O5 catalyst provides a novel way of inner-looping redox reaction for the continuous conversion of biomass.

Keywords: Pine wood; Hydrogen; Catalytic; Ca2Fe2O5; Inner-looping (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191731810X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:212:y:2018:i:c:p:931-943

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2017.12.087

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:931-943