EconPapers    
Economics at your fingertips  
 

Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste

Yangyang Li, Yiying Jin, Hailong Li, Aiduan Borrion, Zhixin Yu and Jinhui Li

Applied Energy, 2018, vol. 213, issue C, 136-147

Abstract: Organics degradation is vital for food waste anaerobic digestion performance, however, the influence of organics degradation on biomethane production process has not been fully understood. This study aims to thoroughly investigate the organics degradation performance and identify the interaction between the reduction of organic components and methane yield based on the evaluation on 12 types of food waste. Five models (i.e. exponential, Fitzhugh, transference function, Cone and modified Gompertz models) were compared regarding the prediction of organic degradation and the results showed that the exponential model fit the experiments best, whereas kinetic parameters could not be commonly used for all situations. The exponential model was then used to study the impacts of organics reduction on the methane production and results revealed that the cumulative methane production (385–627 mL/g volatile solid) increased exponentially with the removal efficiency of volatile solids, lipids, and proteins for all feedstocks, whereas volatile solid reduction increased exponentially and linearly, respectively, with the removal efficiency of lipids and proteins. Additionally, protein degradation increased exponentially with the reduction efficiency of lipids. The experimental data and model simulation results suggested that higher methane production (530–548 mL/g volatile solid) and removal efficiency of volatile solids (65.0–67.8%), lipids (77.8–78.2%), and proteins (54.7–58.2%) could be achieved in a shorter digestion retention when carbohydrate content was higher than 47.6%, protein content lower than 24.1%, and lipid content lower than 28.3%.

Keywords: Food waste; Anaerobic digestion; Organic composition; Methane; Kinetics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300333
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:213:y:2018:i:c:p:136-147

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.033

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:136-147