Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application
Jing Li,
Guoxiao Xu,
Xingying Luo,
Jie Xiong,
Zhao Liu and
Weiwei Cai
Applied Energy, 2018, vol. 213, issue C, 408-414
Abstract:
A non-destructive swelling-filling (SF) strategy is applied for inorganic modification on Nafion by using functionalized silica (F-silica) nanoparticles as fillers. With the facilely prepared F-silica gel as SF treating agent, the mono-dispersed F-silica nanoparticles can in-situ insert into the Nafion membrane and tightly anchor on the Nafion chains through the hydrogen bonding interaction between the oxygen containing groups on F-silica fillers and –SO3H group on Nafion chains. The F-silica nanoparticles act as bi-functional fillers in the modified Nafion membrane to improve proton conductive and methanol-permeation resistive performances simultaneously. 100% enhanced proton/methanol selectivity therefore leads to a more than 30% improved direct methanol fuel cell (DMFC) performance in terms of power output. By considering the great mechanical, thermal and oxidative stabilities comprehensively, the F-silica-Nafion membranes exhibit promising application potential for high-energy DMFC application.
Keywords: Direct methanol fuel cell; Proton exchange membrane; Swelling-filling Nafion modification; Non-destructive; Functionalized silica (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300643
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:213:y:2018:i:c:p:408-414
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.01.052
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().