EconPapers    
Economics at your fingertips  
 

Numerical investigation on adding/substituting hydrogen in the CDC and RCCI combustion in a heavy duty engine

Rouhollah Ahmadi and S. Mohammad Hosseini

Applied Energy, 2018, vol. 213, issue C, 450-468

Abstract: In this paper, the influence of hydrogen addition or substitution on Conventional Diesel Combustion (CDC) and Reactivity Controlled Compression Ignition (RCCI) combustion at 1208 and 1300 rpm on medium load, without exhaust gas recirculation (EGR) in Caterpillar 3401 heavy-duty diesel engine is numerically investigated. Different parameters of the ringing intensity, heat efficiency, heat release, cylinder pressure variations, CO, soot, UHC, NOx and CO2 emissions are studied and compared with and without hydrogen combustion. It results that in CDC at 1208 rpm, if hydrogen is substituted to 40.2% of diesel input energy, the emission of CO, soot, UHC, NOx and CO2 greenhouse will decrease to 98%, 27%, 99%, 13% and 38%, respectively; however, indicated work suffers 1% reduction. On the other hand, in all states of hydrogen addition in CDC at 1208 rpm, all pollutant emissions increase, but, this addition leads to increasing of output work. In the best case when hydrogen is added to diesel by 55% of input energy, work increases by 43%; however, when hydrogen is added over than 55% of input energy, knocking will happen. In RCCI combustion, when hydrogen is added or substituted, instead of methane and diesel respectively, methane combustion will improve and emissions except NOx, will reduce. Hydrogen addition in RCCI combustion at 1300 rpm causes the increment of chamber reactivity, which leading to advance the ignition and hasten the rate of temperature and pressure rise in the chamber. The important result is that the hydrogen substitution more than 11% of input energy for methane, and hydrogen addition more than 60% of input energy for diesel cause knocking phenomenon in RCCI engine. In the final, to make a comprehensive comparison the performance and pollutions of gasoline-diesel, methane-diesel, methane-diesel-hydrogen and diesel-hydrogen combustions in this engine are compared among several studies.

Keywords: Conventional diesel combustion; RCCI; Hydrogen; Emissions; Simulation; Engine performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300576
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:213:y:2018:i:c:p:450-468

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.048

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:450-468