EconPapers    
Economics at your fingertips  
 

Dynamic prediction of a building integrated photovoltaic system thermal behaviour

Ya Brigitte Assoa, Leon Gaillard, Christophe Ménézo, Nicolas Negri and François Sauzedde

Applied Energy, 2018, vol. 214, issue C, 73-82

Abstract: A dynamic numerical thermal model has been developed for rooftop building integrated photovoltaic systems, considering a fully or partially integrated configuration, their integration structure and an insulated air gap at the underside. The two-dimensional mathematical model was validated using a test bench representing a residential partially integrated photovoltaic system. The accuracy of the model was studied by deriving the equivalent thermal resistance (or Ross coefficient). Values obtained with the developed model were compared to a nominal operating cell temperature thermal model based on manufacturer datasheet, and the measured data. The results were indicative of a well ventilated air gap and an appropriate choice of Nusselt number. The model was additionally tested for a fully integrated photovoltaic system to demonstrate its utility for different integration architectures. The mean absolute error of the model was evaluated to 2.71 °C for module temperature. It could, therefore, be useful for design studies requiring the prediction of thermal behaviour, as may become important for future regulations and business models such as self-consumption. Future work will consider façade photovoltaic systems, shading elements and coupling to an electrical model. Preliminary results indicate an accuracy of 4.7% in electrical energy production using a simplified electrical model.

Keywords: Building Integrated Photovoltaic (BIPV); Thermal modelling; Accuracy; NOCT; Ross coefficient (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300928
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:214:y:2018:i:c:p:73-82

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.078

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:214:y:2018:i:c:p:73-82