Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland
Lei Xu,
Bodi Wang,
Xiuhua Liu,
Wenzheng Yu and
Yaqian Zhao
Applied Energy, 2018, vol. 214, issue C, 83-91
Abstract:
Direct energy harvesting from the newly established constructed wetland-microbial fuel cell (CW-MFC) offers it a competitive position compared with traditional constructed wetlands (CWs) to allow the CWs for wastewater treatment and concomitantly achieve power generation. However, the integration of MFC into CWs always faces a large portion of energy losses due to the existence of higher internal resistance. This paper reports tests of a novel strategy, namely a capacitator engaged duty cycling (CDC) strategy, to harvest energy from an open air bio-cathode CW-MFC. Results show that with duty cycle value of 31.6% (D = 31.6%), the effective charge obtained from CDC strategy is 19.81% higher than the conventional continuous loading (CL) mode within the same discharging time. With a lower D value of 20% (D = 20%), the total charge harvested increased about 25.0%. The CDC operation mode shows advantages over the higher internal resistance system and contributes to a higher normalized COD removal rate. This operation strategy can minimize the energy losses with a suitable D value. It is a simple but effective way to maximize the energy harvesting from the CW-MFC system.
Keywords: Constructed wetland; Microbial fuel cell; Energy harvest; Capacitor; Duty cycle; Wastewater treatment (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300849
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:214:y:2018:i:c:p:83-91
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.01.071
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().