EconPapers    
Economics at your fingertips  
 

In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S

L.C. Sögütoglu, P.A.J. Donkers, H.R. Fischer, H.P. Huinink and O.C.G. Adan

Applied Energy, 2018, vol. 215, issue C, 159-173

Abstract: Thermochemical materials K2CO3, MgCl2 and Na2S have been investigated in depth on energy density, power output and chemical stability in view of domestic heat storage application, presenting a critical assessment of potential chemical side reactions in an open and closed reactor concept. These materials were selected based on a recent review on all possible salt hydrates, within the frame of a thermochemical heat battery and considering recent advances in heat storage application. Judged by gravimetric and calorimetric experiments in operating conditions and worst-case-scenario conditions, K2CO3 is recommended for both an open and closed system heat battery. The compound is chemically robust with a material level energy density of 1.28 GJ/m3 in an open system and 0.95 GJ/m3 in a closed system, yielding a power output of 283–675 kW/m3. Na2S and MgCl2 on the other hand are chemically not robust in heat storage application, although having a higher energy density, output power and temperature in one cycle.

Keywords: Thermo chemical heat storage; Salt hydrates; Phase diagram; Chemical stability; Side reactions; Enthalpy of hydration; Energy density (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918300989
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:159-173

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.083

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:159-173