Life-cycle assessment of a low-concentration PV module for building south wall integration in China
Guiqiang Li,
Qingdong Xuan,
Gang Pei,
Yuehong Su,
Yashun Lu and
Jie Ji
Applied Energy, 2018, vol. 215, issue C, 174-185
Abstract:
Low-concentration PV (CPV, concentrating photovoltaic) technology is a promising concept because it can work with the fixed installation. However, besides the economic consideration, the environmental impacts of the CPV module throughout its life cycle should be addressed as compared with the flat PV technology. Thus, in this paper, a novel high optical performance low-concentration concentrator namely asymmetric compound parabolic concentrator (aCPC) for building south wall integration is proposed. And based on the proposed aCPC-PV module, a life cycle assessment (LCA) has been performed for the low-concentration PV in China to make a scientific comparison with the PV module with the same output level environmentally. Several environmental indicators are calculated for Beijing, Hefei, Lhasa, Lanzhou, Harbin. The primary energy demand, energy payback time and environmental impacts are considered over the entire life cycle of the aCPC-PV module. The results show that the primary energy demand, energy payback time and environmental impacts of the aCPC-PV module are all relatively lower than that of the PV module with the same output. It is confirmed by the LCA study that the aCPC-PV module on behalf of the low-concentration PV technology is still a feasible and effective way for actual engineering because it’s more economic and more environmental friendly than the PV technology although the PV is experiencing continuous decrease in price and increase in efficiency.
Keywords: Asymmetric compound parabolic concentrator (aCPC); Optical efficiency; Life-cycle assessment (LCA); Energy payback time (EPBT); Environmental impacts (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301247
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:174-185
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.005
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().