Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage
Yu Luo,
Xiao-yu Wu,
Yixiang Shi,
Ahmed F. Ghoniem and
Ningsheng Cai
Applied Energy, 2018, vol. 215, issue C, 383 pages
Abstract:
Renewable power intermittency requires storage for load matching. A system combining a solid oxide electrolysis cell (SOEC) and a methanation reactor (MR) could be an efficient way to convert excess electricity into methane, which can be integrated with the existing natural-gas network. In this paper, a comprehensive exergy analysis is performed for three methane production systems: (i) water electrolysis + Sabatier reactor (SR, CO2 MR), (ii) H2O/CO2 co-electrolysis + MR, and (iii) a single SOEC-MR reactor, is performed. First, we find that in the case of the water electrolysis + SR system, upon replacing the low-temperature electrolysis cell with SOEC, the exergy efficiency is dramatically increased by 11% points of percentage at current densities higher that 8000 A m−2, owing to lower electricity consumption. Second, the type of SOEC, operating mode, and operating conditions are optimized for this system. Results show that H2O/CO2 co-electrolysis + MR performs more efficiently than water electrolysis + SR at high current density, especially when using an intermediate-temperature SOEC. The optimal H/C ratio and temperature are found to be 10.54 and 650 °C, respectively. A pressurized intermediate-temperature SOEC enables the system to achieve better thermal integration and improves the exergy efficiency to over 77.43% at 6 bar. Finally, the single SOEC-MR reactor with a spatial temperature gradient has the potential to improve the exergy efficiency to 81.34% while utilizing a compact system.
Keywords: Solid oxide electrolysis cell; Methanation; Exergy analysis; H2O/CO2 co-electrolysis; Intermediate temperature; Pressurizing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301429
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:371-383
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.022
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().