Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell
Aiqin Zhao,
Jinliang An,
Jinglei Yang and
En-Hua Yang
Applied Energy, 2018, vol. 215, issue C, 468-478
Abstract:
This paper presents a novel approach to synthesize microencapsulated phase change materials (MEPCMs) with composite titania-polyurea (TiO2-PUA) shell at low temperature. MEPCM pre-microcapsules with PUA shell were first synthesized through interfacial polymerization in oil-in-water emulsion, followed by deposition of TiO2 on the surface of pre-microcapsules in solution by means of the liquid phase deposition (LPD) method at low temperature. The two-step synthesis approach results in high yield of microcapsules and the MEPCMs with composite TiO2-PUA shell integrate advantages of both organic and inorganic shells. Results show that the MEPCMs have a well-defined core–shell structure with around 73 wt.% of core fraction and dense composite TiO2-PUA shell, which is thermally stable and durable and effectively lowers the evaporation and prevents leakage of the core material even under repeated heating and cooling. The MEPCMs also show mitigated supercooling, faster thermal response, and high thermal storage capacity. TiO2-PUA MEPCM-modified cement pastes showed distinct latent heat storage capacity.
Keywords: Latent heat storage; Phase change material (PCM); Microencapsulation; Titanium dioxide (TiO2); Polyurea (PUA); Composite shell (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301831
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:468-478
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().