Assessment of a novel heat-driven cycle to produce shaft power and refrigeration
Sami M. Alelyani,
Jonathan A. Sherbeck,
Nicholas W. Fette,
Yuqian Wang and
Patrick E. Phelan
Applied Energy, 2018, vol. 215, issue C, 764 pages
Abstract:
This paper proposes a novel combined cooling and power (CCHP) system based on a composition of a Rankine, gas refrigeration (reverse Brayton), liquid desiccant, ejector, and evaporative cooling cycles. The two proposed configurations, called the original cycle (OC) and the enhanced cycle (EC), utilize heat rejected by the Rankine cycle via its condenser in order to regenerate the liquid desiccant cycle. The desiccant cycle allows the cooling systems to decouple sensible and latent loads, and potentially reduce water consumption relative to pure evaporative cooling. Based on our thermodynamic calculations, the OC and EC are more feasible from an energy-saving viewpoint compared with separate systems that provide the same services for sensible heat ratios (SHR) less than 14% and 39%, respectively. At a fixed heat source input of about 2.4 MWth at 210 °C, the OC is capable of generating 103 kWe of electrical power, 181 kWth of sensible cooling, 1631 kWth of latent cooling capacity, and fresh water at 2.7 m3/h capacity. At a SHR of 10%, the OC can achieve an exergy efficiency and primary energy saving ratio (PESR) of 24% and 28%, respectively. Similarly, and at the same thermal energy input, the EC can supply 354 kWe, 400 kWth, and 1199 kWth, and 1.8 m3/h of electrical power, sensible cooling capacity, latent cooling capacity, and fresh water capacity, respectively, at a SHR of 25%. Furthermore, the EC is more efficient than both the OC and stand-alone conventional systems as it shows a higher exergy efficiency of 53% and PESR of 29%.
Keywords: Tri-generation; Polygeneration; Combined cooling and power; Combined cooling heating and power (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:751-764
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().