EconPapers    
Economics at your fingertips  
 

An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage

L. Wei, M.C. Wu, T.S. Zhao, Y.K. Zeng and Y.X. Ren

Applied Energy, 2018, vol. 215, issue C, 98-105

Abstract: In this work, an iron-based alkaline battery using the same redox-active element featuring different coordination chemistries is developed and tested. The battery achieves a significantly low active material cost per kilowatt hour ($22 kW h−1) due to the inherently inexpensive price and availability of iron oxide and iron ferricyanide, particularly when compared with state-of-the-art vanadium redox flow batteries ($118 kW h−1) or the commercialized nickel cadmium battery ($51 kW h−1). Experimental results show that the present battery creates an equilibrium cell potential of 1.2 V and its coulombic efficiency reaches as high as 99% at a current density higher than 4 mA cm−2. Moreover, the energy efficiency can be maintained above 76% and the capacity decay rate is only 0.15% per cycle at a current density of 2 mA cm−2 over 150 cycles. With these advantages, the battery offers a promising solution for low-cost energy storage applications.

Keywords: All iron battery; Alkaline battery; Low cost; Energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191830093X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:215:y:2018:i:c:p:98-105

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.01.080

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:215:y:2018:i:c:p:98-105