The effect of different particle residence time distributions on the chemical looping combustion process
Matthias A. Schnellmann,
Felix Donat,
Stuart A. Scott,
Gareth Williams and
John S. Dennis
Applied Energy, 2018, vol. 216, issue C, 358-366
Abstract:
A model for chemical looping combustion has been developed to allow the effect of different residence time distributions of oxygen carrier particles in the air and fuel reactors to be investigated. The model envisages two, coupled fluidised bed reactors with steady circulation of particles between them. The results show that the process is sensitive to the residence time distributions, particularly when the mean residence time of particles in the reactors is similar to the time required for them to react completely. Under certain operating conditions, decreasing the variance of the residence time distribution, leads to a greater mean conversion of the particles by the time they leave the reactors and higher mean rates of reaction in the beds. In this way the required inventory and circulation rate of solids could be reduced, which would lower the capital and operating costs of a CLC process. Since the residence time distribution of solids is important, it should be taken into account when modelling or designing a chemical looping combustion process, e.g. by using a tanks-in-series model. This work indicates that if the number of tanks, N ≤ 5, knowing N to the nearest integer is generally sufficient, unless a high degree of accuracy is needed. As N increases, the sensitivity of the coupled system decreases, so for N > 5, knowing the value to the nearest 5 or 10 tanks is sufficient. This is valid whether N is the same or different in the two reactors. Chemical looping combustion is one example of a reactor-regenerator system, so the results are also relevant for other processes of this type, such as fluidised catalytic cracking.
Keywords: Chemical looping combustion; Fluidization; Residence time distribution; Reactor regenerator; Simulation; Redox (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:358-366
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.046
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().