EconPapers    
Economics at your fingertips  
 

Non-tracking East-West XCPC solar thermal collector for 200 celsius applications

Bennett Widyolar, Lun Jiang, Jonathan Ferry and Roland Winston

Applied Energy, 2018, vol. 216, issue C, 533 pages

Abstract: The design and development of a commercial-ready medium-temperature solar thermal collector, the external compound parabolic concentrator (XCPC), is presented in which a nonimaging reflector is paired with an evacuated tube absorber for efficient and low-cost heat collection between 100 and 250 °C. The absorber geometry is optimized under the constraint of being assembled with an ultrasonic welding machine, with a final pentagon-shaped absorber selected. The modified absorber shape, gap loss, and truncated reflector result in a geometric efficiency of 93% compared to an ideal CPC. The final prototype has a 4.56 m2 aperture and simulations predict an optical efficiency of 71% and thermal efficiency of 50% at 200 °C. Experimental test results (optical, thermal, stagnation) have confirmed an optical efficiency of 62% and a thermal efficiency near 50% at 200 °C with a final stagnation temperature of 333 °C. A detailed economic analysis reveals the technology can be installed for $0.58/watt and deliver a levelized cost of heat at 3.01 cents per kWh over a 20 year lifetime. This is equivalent to the current cost of natural gas in the United States, which underscores the potential of this technology to assist in decarbonizing the thermal energy sector.

Keywords: CPC; XCPC; Nonimaging; Industrial process heat; Solar heat industry; Solar thermal (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301569
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:521-533

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.02.031

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:521-533