Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses
Chao Chen,
Haoshu Ling,
Zhai, Zhiqiang (John),
Yin Li,
Fengguang Yang,
Fengtao Han and
Shen Wei
Applied Energy, 2018, vol. 216, issue C, 602-612
Abstract:
Using phase change material (PCM) in the north wall of solar greenhouses has been recommended as an efficient solution for promoting their indoor thermal environment. In this type of walls, however, there is always a thermal-stable layer, which would greatly decrease their heat storage capacity. To solve this problem, an active-passive ventilation wall with PCM has been developed in this study, and a comparative study was carried out using both experimental and numerical methods to justify its advantages over conventional walls. Several important parameters have been monitored or calculated to reflect the contribution of the newly proposed method to the performance of the middle layer of the wall, the indoor thermal environment and the plants’ growth. The obtained results confirmed the great effectiveness of the proposed wall in promoting the temperature of its middle layer and irradiated surface. In the newly proposed wall, there was no thermal-stable layer observed, resulting in a minimum temperature rise of 1.34 °C. The proposed solution also enhanced the wall’s heat storage capacity by 35.27–47.89% and the heat release capacity by 49.93–60.21%, resulting in an average increase of indoor air temperature, daily effective accumulative temperature and soil temperature by 1.58–4.16 °C, 33.33–55.06% and 0.53–1.09 °C, respectively. The plant height, stem diameter and fruit yield have been increased by 30%, 25% and 28%, respectively.
Keywords: Solar greenhouse; Phase change material; Ventilation wall; Thermal performance; Experimental study (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918302617
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:602-612
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.130
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().