EconPapers    
Economics at your fingertips  
 

The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

Madeleine McPherson, Nils Johnson and Manfred Strubegger

Applied Energy, 2018, vol. 216, issue C, 649-661

Abstract: Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Yet there is vast uncertainty in the future costs of these technologies, as reflected in the range of projected costs in the literature. This study uses the integrated assessment model, MESSAGE, to explore the implications of future storage and hydrogen technology costs for low-carbon energy transitions across the reported range of projected technology costs. Techno-economic representations of electricity storage and hydrogen technologies, including utility-scale batteries, pumped hydro storage (PHS), compressed air energy storage (CAES), and hydrogen electrolysis, are introduced to MESSAGE and scenarios are used to assess the sensitivity of long-term VRE deployment and mitigation costs across the range of projected technology costs. The results demonstrate that large-scale deployment of electricity storage technologies only occurs when techno-economic assumptions are optimistic. Although pessimistic storage and hydrogen costs reduce the deployment of these technologies, large VRE shares are supported in carbon-constrained futures by the deployment of other low-carbon flexible technologies, such as hydrogen combustion turbines and concentrating solar power with thermal storage. However, the cost of the required energy transition is larger. In the absence of carbon policy, pessimistic hydrogen and storage costs significantly decrease VRE deployment while increasing coal-based electricity generation. Thus, R&D investments that lower the costs of storage and hydrogen technologies are important for reducing emissions in the absence of climate policy and for reducing mitigation costs in the presence of climate policy.

Keywords: Storage technologies; Hydrogen technologies; Variable renewable energy integration; Energy system transition; Integrated assessment modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (56)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918302356
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:649-661

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.02.110

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:649-661