EconPapers    
Economics at your fingertips  
 

Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine

Luigi Teodosio, Dino Pirrello, Fabio Berni, Vincenzo De Bellis, Rosario Lanzafame and Alessandro D'Adamo

Applied Energy, 2018, vol. 216, issue C, 104 pages

Abstract: Nowadays various technical solutions have been proposed in order to improve the performance of spark-ignition internal combustion engines both at part and full load operations, especially in terms of Brake Specific Fuel Consumption (BSFC). Among the most advanced technical solutions, a fully flexible valve control system (VVA – Variable Valve Actuation) appears a very robust and reliable approach to attain the above aim. In fact advanced valve strategies, such as Early Intake Valve Closure (EIVC) and Late Intake Valve Closure (LIVC), proved to be an effective way to decrease the fuel consumption: at part load through a reduction of the pumping work and, at high load, through a knock mitigation and an over-fueling reduction.

Keywords: SI engine; 1D model; EIVC; LIVC; Knock tendency; Fuel consumption. (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301570
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:216:y:2018:i:c:p:91-104

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.02.032

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:216:y:2018:i:c:p:91-104