On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler
Jie Lin,
Duc Thuan Bui,
Ruzhu Wang and
Kian Jon Chua
Applied Energy, 2018, vol. 217, issue C, 126-142
Abstract:
The performance of the dew point evaporative cooling (DPEC) is dominated by its convective heat and mass transfer mechanism. Existing mathematical models are mainly developed for the thermodynamic analysis of DPEC under various operating and geometric conditions. The convective heat and mass transfer coefficients are estimated using the Nusselt number and Sherwood number at constant surface conditions. However, as the channel surface is subjected to a naturally-formed boundary condition, the cooler’s actual heat and mass transfer performance remains unclear and has never been investigated. Therefore, we propose an experimental and numerical study, to examine at the fundamental level, the convective heat and mass transfer process of the DPEC. The temperature and humidity distributions of a counter-flow dew point evaporative cooler are measured under different test conditions. The magnitude of the convective heat and mass transfer coefficients are determined using the log mean temperature/humidity difference method. Concurrently, a 2-D mathematical model has been formulated to simulate the heat and mass transfer performance of the cooler. The model agrees well with the acquired experimental data with a maximum discrepancy of ±7.0%. The product air temperature, convective heat and mass transfer coefficients and the Nusselt number and Sherwood number, are further examined under different conditions. Key findings emerged from this study reveal that ReD,r,HL,δH and π are the dominant factors related to the heat and mass transfer performance. The average convective heat and mass transfer coefficients are found to be 26.8–29.9 W/(m2·K) and 0.025–0.027 m/s. The corresponding Nu‾D,d,Nu‾D,w and Sh‾D,w span 8.67–9.95, 8.68–9.21 and 8.17–8.67, respectively, under varying dimensionless numbers/groups.
Keywords: Dew point evaporative cooling; Temperature; Heat and mass transfer; Nusselt number; Sherwood number (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918302514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:217:y:2018:i:c:p:126-142
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.120
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().