Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer
Viral K. Patel,
Kyle R. Gluesenkamp,
Dakota Goodman and
Anthony Gehl
Applied Energy, 2018, vol. 217, issue C, 232 pages
Abstract:
Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This paper presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lbc/kWh), with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kgc/kWh (5.60 lbc/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. The results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.
Keywords: Clothes drying; Energy efficiency; Thermoelectric; Heat pump; Thermodynamics; Modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918301818
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:217:y:2018:i:c:p:221-232
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.055
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().