Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity
Ang Li,
Jingjing Wang,
Cheng Dong,
Wenjun Dong,
Dimberu G. Atinafu,
Xiao Chen,
Hongyi Gao and
Ge Wang
Applied Energy, 2018, vol. 217, issue C, 369-376
Abstract:
Energy storage capacity and heat transfer ability are two important indexes for shape-stabilized phase change materials (ss-PCMs). In this paper, a core-sheath CNT@PC was prepared via carbonation of CNT@ZIF-8, simultaneously 3D structural supports were obtained due to the porous carbon (PC) sheath stabilized the CNT@PC network structure. Porous carbon (PC), derived from carbonized metal organic frameworks (MOFs), exhibited high porosity and large specific surface area. PCMs, absorbed by capillary force of porous structure, was stabilized in the pores of PC sheath. Further, the interaction between PCMs and CNTs reduced the interfacial thermal resistance greatly. Carbon nanotubes (CNTs), acting as heat transfer pathways, provided continuous channels for phonons transfer and realized rapid heat transformation between ss-PCMs and external environment. The obtained SA/CNT@PC ss-PCMs exhibited excellent thermal conductivity (1.023 W/mK), large phase change enthepy (155.7 J g−1) and high thermal storage capabilities (99.9%). The thermal conductivity of SA/CNT@PC was improved 222.6% and phase change enthalpy was increased 92.6% over SA/PC ss-PCM. SA/CNT@PC with large energy storage density, flexible designation, simple operation and near-constant temperature properties during phase change process shows great potential in waste heat utilization.
Keywords: High thermal conductivity; Phase change materials; Metal-organic frameworks; CNTs; Core-sheath (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261917318317
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:217:y:2018:i:c:p:369-376
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2017.12.106
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().