EconPapers    
Economics at your fingertips  
 

A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers

Yuanshen Lu, Alexander Klimenko, Hugh Russell, Yuchen Dai, John Warner and Kamel Hooman

Applied Energy, 2018, vol. 217, issue C, 496-508

Abstract: In thermal power cycles including concentrating solar thermal (CST) plants, natural draft cooling towers (NDCTs) are widely used heat-dumping facilities. One inherent drawback of NDCTs is that their cooling performance can be compromised by changes in ambient conditions, particularly temperature, which inevitably reduces the net power output of the cycles. Current methods resolving this issue are limited in a few options including inlet air pre-cooling, exit air heating, and fan assistance, each with considerable operational or initial cost. To more economically reduce energy efficiency losses of the power cycles due to inefficient cooling, this paper proposes a new concept of swirling plume method for both dry- and wet-type NDCTs. The method is to rotate the plume strongly like a tornado in the tower upper part and above the towers to increase the overall tower updraft capacity (pressure). The swirling plume is induced by high-speed air jets distributed at certain locations using a much smaller flow rate. A numerical investigation on a 20 m-tall dry-type NDCT model has been conducted verifying that this concept increases the airflow and the water temperature drop of the heat exchanger by at least 53.6% and 3.57 °C (39.2%), respectively, under 35 °C ambient temperature. This cooling performance enhancement enables a half megawatt-scale sCO2-based CST power cycle to recover its net power output, by 4.98%, to the level almost same as that at 30 °C ambient temperature. The air jet to create such a swirling plume consumes only 1/7 of the recovered power roughly. Compared with a traditional fan-forced cooler working under exactly the same condition, this concept requires significantly smaller energy in long-term operations as it would run only during temperature extremes. A simplified analytical modelling has found that the cooling tower performance is improved due to that the swirling plume creates an equivalent extra draft height on top of the tower which is attributed to two different vortical effects. The overall angular momentum of the swirl is a critical factor in these effects.

Keywords: Natural draft cooling towers; Vortex cooling tower; Cooling enhancement; Swirling plume; Updraft vortex; Power cycle efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918302204
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:217:y:2018:i:c:p:496-508

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.02.095

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:496-508