Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts
Xiaowen Zhang,
Rui Zhang,
Helei Liu,
Hongxia Gao and
Zhiwu Liang
Applied Energy, 2018, vol. 218, issue C, 417-429
Abstract:
To enhance the energy efficiency of the CO2 desorption process, the regeneration behaviors of the CO2-loaded 6 M MEA-AMP-PZ (monoethanolamine, 2-amino-2-methyl-1-propanol and piperazine) tri-solvent blends with different AMP/PZ molar ratios with four different solid acid catalysts (H-ZSM-5, γ-Al2O3, SAPO-34 and SO42−/TiO2) and a blank at 96 °C were investigated in terms of CO2 desorption rate, cyclic capacity and relative heat duty. For the no-catalytic runs, the results showed that all the tri-solvent blended amines greatly increased CO2 desorption rate, cyclic capacity and decreased the relative heat duty in comparison with 5 M MEA. The 13C NMR analysis indicated that the 3 M MEA-2.5 M AMP-0.5 M PZ blend with the highest AMP/PZ ratio produced the largest amount of bicarbonate and less carbamate, which resulted in the best desorption performance. With regard to catalyst, when the solid acid catalysts were introduced, the regeneration performance of the blend was further improved. The best of the blends along with H-ZSM-5 provided the combination with the best performance in CO2 desorption, and reduced the relative heat duty by 61.6% as compared to 5 M MEA without catalyst (100%). Five relevant physicochemical properties of the catalyst were obtained and used to better understand the catalytic regeneration process. A possible catalytic CO2 desorption mechanism was analyzed. The results revealed that the mesopore surface area coupled with total acid sites of the catalyst had the most positive influence on improving the CO2 desorption performance. Findings from this work imply that the combination of solid acid catalyst with tri-solvent blended amines is a promising alternative method for further reduction of solvent regeneration energy requirement.
Keywords: CO2 capture; Energy reduction; Tri-solvent blend amines; catalytic CO2 desorption; NMR analysis; Solid acid catalyst (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918302125
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:218:y:2018:i:c:p:417-429
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.02.087
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().