EconPapers    
Economics at your fingertips  
 

A new fault detection and fault location method for multi-terminal high voltage direct current of offshore wind farm

Jianwei Li, Qingqing Yang, Hao Mu, Simon Le Blond and Hongwen He

Applied Energy, 2018, vol. 220, issue C, 13-20

Abstract: This paper proposes a novel protection scheme for multi-terminal High Voltage Direct Current (MTDC) systems incorporating offshore wind farm based on high-frequency components detected from the fault current signal. This method can accurately detect the fault on each line and classify the fault types. Using the post-fault current time series, both single-ended measurements (detection and classification) and double-end measurements (location), the frequency spectrum is generated to measure the gaps between the contiguous peak frequencies giving a robust and comprehensive scheme. Unlike the previous travelling wave based methods, which must identify the travelling wavefront and require a high sampling rate, the new gap-based approach is able to give accurate fault detection and fault location using any appropriate range of post-fault signals. Furthermore, the proposed method is fault resistance independent and thus even a very high fault impedance has no effect on the fault location detection. By immediately tripping the faults, the fault-caused disturbance to the offshore wind farm is minimized. A three-terminal voltage sourced converter HVDC (VSC-HVDC) system connection of offshore wind farm is modelled in PSCAD/EMTDC (Power Systems Computer Aided Design/Electro-Magnetic Transients including DC) software, which is used for obtaining the fault current data for the transmission line terminal. The algorithm is verified by studying a range of cases, by varying the fault resistance fault locations and also including external faults. The results show that the proposed method gives an accurate and reliable fault detection, classification and location on the test MTDC system.

Keywords: Fault location; Frequency spectrum; Offshore wind farm; Transmission line; VSC-HVDC system (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918303738
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:13-20

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.03.044

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:13-20