EconPapers    
Economics at your fingertips  
 

Design and development of a Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic concentrator (BFI-ACP-PV)

Wei Lu, Yupeng Wu and Philip Eames

Applied Energy, 2018, vol. 220, issue C, 325-336

Abstract: Building Integrated PV and Concentrating PV can generate electricity onsite and provide savings in materials and electricity costs, as well as protecting buildings from weather. In this paper, a novel truncated stationary asymmetric compound parabolic photovoltaic concentrator with a geometric concentration ratio of 2.0 has been designed and experimental characterised. The designed system is suitable for building façade application, especially for vertical façade. It has wide acceptance half angles of 0° and 55°, this acceptance angle range enables the concentrator to operate year-round at its geometric gain in most of the UK and EU climatic condition. A comprehensive indoor test was carried out to evaluate the electrical and thermal characterisation of the developed Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic concentrator (BFI-ACP-PV) system, and also the factors that affect the power output of the developed system. The experimental results showed that the developed BFI-ACP-PV system has the potential to increase the power output per unit solar cell area by a factor of 2, when compared with a non-concentrating PV system. Subsequently, a Phase Change Material (PCM) system was integrated to the rear of the BFI-ACP-PV system to moderate the PV temperature rise and maintain good solar to electrical conversion efficiency. It was found out that the electrical conversion efficiency for the BFI-ACP-PV coupled PCM system was increased by over 5% compared with a similar system with no PCM integrated at the rear, when the incident solar radiation intensity was 280 W/m2, this value increased by over 10% for an incident solar radiation intensity of 670 W/m2.

Keywords: Building Façade Integrated Asymmetric Compound Parabolic PV concentrator; Phase Change Materials; Power output; Solar to electrical conversion efficiency; Electrical power losses (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304100
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:325-336

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.03.071

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:325-336