EconPapers    
Economics at your fingertips  
 

Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study

Jinyang Jiang, Qi Zheng, Yiru Yan, Dong Guo, Fengjuan Wang, Shengping Wu and Wei Sun

Applied Energy, 2018, vol. 220, issue C, 395-407

Abstract: In this work, emphasis was placed on the design of a novel nanocomposite for thermal energy storage in the field of green building constructions. Calcium silicate hydrate (C-S-H), the primary product of cement hydration, was firstly introduced as mesoporous accommodations for lauric acid, from an experimental and theoretical prospective. In detail, C-S-H@LA composite was systematically examined through experiments, in terms of Scanning Electron Microscope, Transmission Electron Microscope, Brunauer–Emmett–Teller gas sorptometry, Fourier Transform Infrared Spectroscopy and Differential Scanning Calorimeter. Results demonstrated C-S-H@LA was one promising composite PCM with 32.04 kJ kg−1 latent heat capacity, 0.514 W m−1 K−1 thermal conductivity and 91.04% energy storage efficiency. No chemical bonds were found between C-S-H and lauric acid. Notably, stability of C-S-H@LA embracing structural, chemical and thermal properties were also verified. Innovatively, molecular simulation was applied to explain the melting behavior of C-S-H@LA that could be divided into three stages, i.e. acceleration period, stationary period and secondary rising period, based on diffusion coefficient. This work has emerged some new design rules for PCMs fabrication.

Keywords: Material design; Phase change materials; Thermal energy storage; Molecular dynamics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304720
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:395-407

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.03.134

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:395-407