Life cycle assessment and environmental profile evaluations of high volumetric efficiency capacitors
Lucy Smith,
Taofeeq Ibn-Mohammed,
S.C. Lenny Koh and
Ian M. Reaney
Applied Energy, 2018, vol. 220, issue C, 496-513
Abstract:
High volumetric efficiency capacitors are found in all smart electronic devices, providing important applications within circuits, including flexible filter options, power storage and sensing, decoupling and circuit smoothing functions. Multilayer ceramic capacitors (MLCCs) hold the major market share but tantalum electrolytic capacitors (TECs) provide a viable alternative if higher breakdown strengths are required. The reduced costs, smaller dimensions suitable for space-constrained electronic circuits, exceptional high-frequency characteristics, higher reliability, ripple control and longevity, however, are driving the market to replace TECs with MLCCs wherever possible. To date, no current research regarding the transition from TECS to MLCCs has been conducted from an entirely environmental viewpoint. This article identifies, quantifies, ranks and compares the environmental impacts of the MLCC and TEC supply chains using an integrated hybrid life cycle assessment framework. Three recovery methods: incineration; hydrometallurgy and pyrometallurgy are considered in the overall impact assessment. Electrical energy consumption during fabrication alongside the use of nickel paste are the major environmental hotspot for MLCCs. The high proportion of tantalum in TECs results in an overall greater environmental impact in comparison with MLCCs, due to intensive extraction, processing and purification requirements of tantalum. Of the three recovery methods, the hydrometallurgy process offers the least environmental impact for both MLCCs and TECs. Overall, the current work shows that while the industry led transition from TECs to MLCCs offers both an operational and functional edge, it is also an environmentally intelligent move. Intervention options that can further drive down the environmental impacts of MLCCs are also proposed such as a reduction in the reliance of MLCCs on rare earth elements and Cu external electrodes in some designs and material recovery.
Keywords: Capacitors; Multilayer ceramic capacitors; Tantalum electrolytic capacitors; Functional materials; Hybrid life cycle assessment; SCEnAT (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:496-513
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.067
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().