EconPapers    
Economics at your fingertips  
 

Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system

Hao Lu and Wenjun Zhao

Applied Energy, 2018, vol. 220, issue C, 514-526

Abstract: The dust deposition behaviours of ground-mounted solar photovoltaic (PV) panels and their effects on the PV efficiency were numerically investigated. The shear stress transport k-ω turbulence model with the inlet user-defined function profiles and the discrete particle model were used to predict the wind flow fields and the dust deposition rates of a PV panel. A grid independence study was conducted, and the mean pressure coefficient was validated with the related experimental data. The effects of the different dust particle diameters and the different tilt angles of the PV panels on the dust deposition characteristics were investigated carefully. The results showed the dust deposition rates of a PV panel were considerably affected by the different tilt angles. The dust deposition rates were considerably higher for the upward PV installations than for the downward ones. Moreover, the dust deposition rates were greater when the solar PV panel was more horizontal with the ground. The peak deposition rates were observed for the 150-μm dust particles for all of the tilted PV panel angles. The maximum deposition rates were 14.28%, 13.53%, 6.79% and 9.78% for the tilted PV panel angles of 25°, 40°, 140° and 155°, respectively. Moreover, the main deposition mechanisms of the solar PV panel were analysed and discussed for the different dust particle sizes and PV panel installation angles. Finally, an empirical model was developed for estimating the PV output reductions caused by the dust deposition for different tilt angles, which could be applied in practical engineering applications.

Keywords: Dust deposition; Solar PV panel; Tilt angle; PV efficiency; CFD (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304331
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:514-526

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.03.095

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:514-526