EconPapers    
Economics at your fingertips  
 

Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium

Zhenyuan Yin, George Moridis, Hoon Kiang Tan and Praveen Linga

Applied Energy, 2018, vol. 220, issue C, 704 pages

Abstract: We analyse numerically an earlier experimental study that involved the formation of methane hydrates by the excess water method in a small reactor filled with a sandy porous medium, and seek to address questions about the type of the hydration reaction and the phase heterogeneity in the resulting hydrate-bearing sand. Using a fine discretization describing the reactor assembly, the experimental process is faithfully replicated numerically. The multi-stage process of hydrate formation is subdivided in 7 steps. The experimental data from the continuously-monitored pressure and temperature during each step are used for comparison against the numerical predictions, the identification of the dominant processes and the determination of the associated parameters through a history-matching process that minimizes deviations between observations and simulation results. The results of this first-ever study on this subject demonstrate unequivocally that the hydration reaction is a kinetic (as opposed to an equilibrium) process, and that the spatial distributions of the various phases (aqueous, gas and hydrate) at the end of the formation process are strongly heterogeneous. This has serious implications in simulation studies of hydrate dissociation that assume uniform initial phase saturation distributions. The history-matching process indicates that (a) the system behaviour is sensitive to some flow parameters (porosity and irreducible water saturation) only during the first water injection, (b) it is insensitive to the sand intrinsic permeability during all steps of the study, and (c) thermal processes dominate after the first water injection, yielding estimates of the thermal properties of the sand and of time-variable key parameters of the kinetic reaction.

Keywords: Methane hydrate; Hydrate formation; Kinetic reaction; Porous medium; Numerical modelling; TOUGH+Hydrate v1.5; Heterogeneous (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304148
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:681-704

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.03.075

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:220:y:2018:i:c:p:681-704