Compatibility study between aluminium alloys and alternative recycled ceramics for thermal energy storage applications
Haoxin Xu,
Fabio Dal Magro,
Najim Sadiki,
Jean-Marie Mancaux,
Xavier Py and
Alessandro Romagnoli
Applied Energy, 2018, vol. 220, issue C, 94-105
Abstract:
Recycled ceramics from industrial wastes, compared with traditional high-purity ceramics, present high market potential as refractory materials due to their low cost production process with very low environmental impacts. However, there still exists a research gap of how recycled ceramics behave while in contact with liquid metal. In order to study the feasibility of using recycled ceramics as the encapsulation material in the application of high temperature Latent Heat Thermal Energy Storage system, this paper investigates the compatibility of recycled ceramics with three kinds of aluminium-based alloys at high temperature, with a comparison to the corrosion resistant behaviour of alumina. The recycled ceramics explored include Cofalit from asbestos containing waste, blast furnace slags from steel production, and coal fly ashes sintered ceramics from incineration plants. The study consists of a steady state thermal treatment of ceramic samples in contact with the three different alloys at 1000 °C for 100 h, and a post instrumental characterization of ceramic samples by Environmental Scanning Electron Microscopy, Energy Dispersive Spectrometry and X-ray diffractometer, to understand the chemical and structural transformation of the ceramics. Results demonstrate that Cofalit shows chemical stability with Al99% but instability with AlSi5% and AlSi12%. Blast furnace slag presents quite good thermochemical stability towards molten AlSi5% and AlSi12%. Coal fly ashes sintered ceramics are highly interactive towards all three aluminium alloys. In conclusion, besides alumina, Cofalit is recommended as alternative encapsulation material for molten Al99%, while blast furnace slag being recommended for molten AlSi5% and AlSi12%.
Keywords: Latent heat thermal energy storage; Aluminium alloys; Recycled ceramics; Compatibility; Waste heat recovery; Waste-to-energy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918303507
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:220:y:2018:i:c:p:94-105
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().