Occupant perceptions of building information model-based energy visualizations in eco-feedback systems
Abigail Francisco,
Hanh Truong,
Ardalan Khosrowpour,
John E. Taylor and
Neda Mohammadi
Applied Energy, 2018, vol. 221, issue C, 220-228
Abstract:
While technology advancements are improving the energy efficiency of buildings, occupant behavior remains a critical factor in ensuring the effectiveness of such enhancements. To this end, numerous eco-feedback systems have been developed to reduce building energy use through influencing occupants' behaviors during building operations. Information representation is a critical component in eco-feedback systems, affecting the users' interpretation, engagement, and motivation to reduce energy consumption. Many studies have focused on using different charts and technical units or abstract and artistic visualizations to represent energy consumption. However, the effectiveness of such techniques varies across studies. Recent research emphasizes the need to integrate information representation strategies that balance numeric and aesthetic appeal. Concurrently, studies have called for increased adoption of a Building Information Model (BIM) during a building's operations phase to improve facility management. In this paper, we introduce a new eco-feedback information representation method that combines numeric and aesthetic appeal through leveraging spatial and color-coding techniques in BIM. The BIM-integrated energy visualization approach developed in this paper uses the Revit Application Program Interface (API) and allows users to visualize and compare energy consumption values in 2D and 3D views of a multi-family building through a color-coding scheme in an as-built BIM. The method is validated through a user survey that quantitatively and qualitatively assesses the proposed 2D and 3D BIM eco-feedback compared to more traditional bar chart based eco-feedback. Our findings suggest that 2D spatial, color-coded eco-feedback provides the optimal information representation, as it is easy to understand, while evoking engaging and motivating responses from users. This study advances our understanding of eco-feedback information representation while expanding BIM applications during building operations. These are important steps to address the human dimension of energy efficiency in the built environment.
Keywords: Building information modeling; Eco-feedback; Energy efficiency; Information representation; Perceptions; Visualization (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918304707
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:221:y:2018:i:c:p:220-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.132
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().