Multiple agents and reinforcement learning for modelling charging loads of electric taxis
C.X. Jiang,
Z.X. Jing,
X.R. Cui,
T.Y. Ji and
Q.H. Wu
Applied Energy, 2018, vol. 222, issue C, 158-168
Abstract:
The charging load modelling of electric vehicles (EVs) is of great importance for safe and stable operation of power systems. However, it is difficult to use the traditional Monte Carlo method and mathematical optimization methods to establish a detailed and precise charging load model for EVs in both the temporal and spatial scales, especially for plug-in electric taxis (PETs) due to its strong random characteristics and complex operation behaviors. In order to solve this problem, multiple agents and the multi-step Q(λ) learning are utilized to model the charging loads of PETs in both the temporal and spatial scales. Firstly, a multi-agent framework is developed based on java agent development framework (JADE), and a variety of agents are built to simulate the operation related players, as well as the operational environment. Then, the multi-step Q(λ) learning is developed for PET Agents to make decisions under various situations and its performances are compared with the Q-learning. Simulation results illustrate that the proposed framework is able to dynamically simulate the PET daily operation and to obtain the charging loads of PETs in both the temporal and spatial scales. The multi-step Q(λ) learning outperforms Q-learning in terms of convergence rate and reward performance. Moreover, the PET shift strategies and electricity pricing mechanisms are investigated, and the results indicate that the appropriate operation rules of PETs significantly improve the safe and reliable operation of power systems.
Keywords: Plug-in electric taxi (PET); Spatial-temporal model; Multi-agent framework; Reinforcement learning; JADE (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918305129
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:222:y:2018:i:c:p:158-168
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.164
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().