Assessment of a novel technology for a stratified hot water energy storage – The water snake
Amin Al-Habaibeh,
Bubaker Shakmak and
Simon Fanshawe
Applied Energy, 2018, vol. 222, issue C, 189-198
Abstract:
The increasing demand to enhance sustainability and reduce carbon emission and pollution is attracting the attention for implementing and integrating diverse heating technologies such as heat pumps, solar energy, gas boilers, Combined Heat and Power (CHP), and electric heaters. Integrated technologies for heating include low and high temperature district heating, domestic small-scale applications and commercial large-scale buildings. Energy from flooded coalmines and water from other sources could also play a vital role in improving energy efficiency of heating and cooling applications. Stratified thermal storage are likely to significantly contribute to energy efficient heating, particularly when implementing a mixed-approach of diverse technologies. A stratified hot water tank, and naturally stratified reservoirs, are expected to play a central role in the integration of several heating technologies that operate efficiently at different levels of temperature with reduced cost. This paper presents a new innovative technology to improve stratification, namely ‘the water snake’, and an automated test rig to evaluate the new stratification method for energy utilisation using energy storage of hot water. An automated system is utilised to evaluate the performance. The results indicate that the test rig has been successful for the automated testing of the technology. Moreover, the results show that the water snake, as a new technology for stratification, is successful in minimising mixing and turbulence inside the thermal energy storage. The results prove that the technology could be implemented for a wide range of applications to enhance the efficiency of heating systems in buildings as well as district heating and cooling applications.
Keywords: Stratification; Water snake; Hot water storage; Thermal energy storage; Heat pumps; District heating (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918305579
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:222:y:2018:i:c:p:189-198
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.04.014
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().