Electric power control of a power generator using dissociation expansion of a gas hydrate
Shin'ya Obara and
Daisuke Mikawa
Applied Energy, 2018, vol. 222, issue C, 704-716
Abstract:
The unique dissociation expansion characteristics of gas hydrates allow a large pressure difference to be obtained from a small change in temperature. This suggests that a clean actuator system may be built that can use low temperature heat from the nighttime air and high temperature heat from daytime solar radiation or other sources. This study proposed a generator that could operate using a small temperature difference, by leveraging the change of state of a gas hydrate. The dynamic characteristics of an alternating current power supply from a gas-hydrate power-generation system (GHGS) have not previously been reported. The objective of the study was to achieve an electric power supply of acceptable quality (frequency and voltage) from a GHGS while tracking demand. A pressure regulating valve under P-I control was used to adjust the supply of high-pressure dissociated gas to the actuator. As the GHGS was of the batch type, a hybrid system including a conventional gas-powered generator was also investigated. A numerical analysis showed that, when a flywheel with an inertia constant of 6.9 kg/m2 was installed, the hybrid system was able to provide a stable electricity supply for an individual house.
Keywords: Temperature difference power generation; Gas hydrate; Gas pressure engine; Power control; Power quality (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918305737
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:222:y:2018:i:c:p:704-716
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.04.031
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().