Characterization of the droplet formation phase for the H2OLiBr absorber: An analytical and experimental analysis
Fabrizio Cola,
Jonathan Hey and
Alessandro Romagnoli
Applied Energy, 2018, vol. 222, issue C, 885-897
Abstract:
The poor heat and mass transfer occurring in the H2OLiBr absorber is one of the main limitations towards reducing the size of absorption chillers. Previous research shows that, as droplets form at the base of the absorber pipes, considerably large mass transfer coefficients can be obtained. However, modeling this phase of droplet formation has not been fully explored, as most of the research focuses on the film flow process preceding the droplet formation. The present study focuses on two aspects. Firstly, the dynamics of the droplet formation is investigated, with a focus on the effect of the solid surface shape on the droplet formation. A model to describe the droplet profile geometry was developed using the Euler-Lagrange equation and validated against experimental tests. Several pin geometries were tested and the results have shown that a 120° rhomboidal geometry is more suitable to increase the liquid-vapor interface area, while lowering the risk of droplet coalescence. Secondly, an analytical heat and mass transfer model based on the Fourier Series method has been developed to study the influence of pin size on the absorption process in an adiabatic absorber. The results show that the optimum width of the 120° rhomboidal pin is found at 6 mm, which maximizes the water absorbed during the droplet formation phase, without excessive use of material. The common assumption that treats the forming droplet as a half sphere fails to capture changes in the pin-droplet interaction which adversely affects the model accuracy. The proposed model shows that for pin widths smaller than 6 mm, the absorption process is impaired by the lower surface area exposed to the water vapor, resulting in up to 67% less mass absorbed obtainable and a decrease in the cooling power obtainable.
Keywords: Absorption; Adiabatic absorber; Droplet formation; Heat and mass transfer; Lithium bromide (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918303659
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:222:y:2018:i:c:p:885-897
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.03.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().