Study of intercooling for rotating packed bed absorbers in intensified solvent-based CO2 capture process
Eni Oko,
Colin Ramshaw and
Meihong Wang
Applied Energy, 2018, vol. 223, issue C, 302-316
Abstract:
Rotating packed beds (RPBs) are a compact and potentially more cost-effective alternative to packed beds for application in solvent-based carbon capture process. However, with concentrated monoethanolamine (MEA) (up to 70–80 wt%) as the solvent, there is a question as to whether intercooler is needed for the RPB absorbers and how to design and operate them. This study indicates that the liquid phase temperature could rise significantly and this makes it essential for RPB absorber to have intercoolers. This is further assessed using a validated RPB absorber model implemented in gPROMS ModelBuilder® by evaluating the impact of temperature on absorption performance. Different design options for RPB absorber intercoolers (stationary vs rotary) were introduced and their potential sizes and associated pressure drop were evaluated based on a large scale flue gas benchmark of a 250 MWe Natural Gas Combined Cycle Power Plant. This paper addresses a fundamental question about intercooling in RPB absorber and introduces strategies for the intercooler design.
Keywords: Solvent-based CO2 capture; Process intensification; Rotating packed bed; Absorber intercooling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918306159
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:223:y:2018:i:c:p:302-316
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.04.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().