EconPapers    
Economics at your fingertips  
 

Robust multi-objective optimization of a renewable based hybrid power system

Justo José Roberts, Agnelo Marotta Cassula, José Luz Silveira, Edson da Costa Bortoni and Andrés Z. Mendiburu

Applied Energy, 2018, vol. 223, issue C, 52-68

Abstract: This paper proposes a probabilistic simulation-based multi-objective optimization approach for dimensioning robust renewable based Hybrid Power Systems. The method integrates an Optimization Module based on a multi-objective Genetic Algorithm, an Uncertainty Module that uses Latin Hypercube Sampling method and Monte Carlo Simulation to generate uncertainty scenarios and a Simulation Module to simulate the power system under real operating conditions. Uncertainties considered include the renewable resources availability, the load demand, and the probability of the components’ failure. The performance of the proposed approach was assessed in a rural community of the Amazonian region of Brazil. Results show that a system configuration with the same level of reliability as in the deterministic scenario implies a higher economic cost; however, the configurations obtained probabilistically represent feasible robust solutions and guarantee a reliable source of generation. The proposed optimization method constitutes a useful decision making tool for dimensioning hybrid power systems that require both optimality and robustness.

Keywords: Hybrid power systems dimensioning; Genetic Algorithm; Probabilistic simulation; Uncertainty; Renewable energy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918305749
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:223:y:2018:i:c:p:52-68

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.04.032

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:223:y:2018:i:c:p:52-68