A comparative thermodynamic evaluation of bioethanol processing from wheat straw
Geoffrey P. Hammond and
Ross V.M. Mansell
Applied Energy, 2018, vol. 224, issue C, 136-146
Abstract:
The thermodynamic implications of different bioethanol production routes from wheat straw (a cellulosic co-product or ‘waste’ stream) have been evaluated. Comparative thermodynamic (energy and exergy) analysis gives rise to alternative insights into the relative performance of various process chains. Energy analysis of four different production paths were firstly analysed via the consideration of mechanical work, temperature changes and separating techniques. The Net Energy Value (NEV) of each production path or route was then evaluated, including the effect of system boundary expansion. In contrast, the thermodynamic property known as ‘exergy’ reflects the ability of undertake ‘useful work’, but does not represent well heating processes. Exergetic efficiencies were consequently obtained via chemical and physical exergy calculations, along with some of the electrical inputs to the different processes. The exergetic ’improvement potentials’ of the process stages were then determined using the exergetic efficiencies and irreversibility values respectively. These estimates will enable industrialists and policy makers to take account of some of the ramifications of alternative bioethanol production routes in a low carbon future.
Keywords: Bioethanol production; Wheat straw; Biofuel blends; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918306925
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:224:y:2018:i:c:p:136-146
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.04.123
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().