EconPapers    
Economics at your fingertips  
 

Energy-efficient storage of methane in the formed hydrates with metal nanoparticles-grafted carbon nanotubes as promoter

Yuan-Mei Song, Fei Wang, Gang Guo, Sheng-Jun Luo and Rong-Bo Guo

Applied Energy, 2018, vol. 224, issue C, 175-183

Abstract: Despite hydrate technology provides an economical and safe method to transport and store natural gas, the large-scale utilization is still restricted by the long hydrate formation process and low gas storage capacity. To address above problems, a novel nanopromoter was synthesized by electrostatic adsorption and in-situ reduction of silver or copper ions on the supports of oxidized carbon nanotubes (symbolized as metal@OCNTs). In the methane hydrate formation, with nanoparticles fraction varied from 0 to 100%, the methane consumption was improved from 44 mmol/.mol water to 150 mmol.mol/water, among which Ag-grafted nanotubes performed better in accelerating hydrate formation. The increasing concentration of the nanopromoters led to reduced formation period to 125.1 min in 40 ppm Ag@OCNTs and 141.8 min in 40 ppm Cu@OCNTs. The optimum gas storage capacity was 153 V/V in 10 ppm Ag@OCNTs and 148.3 V/V in 20 ppm Cu@OCNTs. Moreover, the high methane recovery of 78.94% without foam generation was achieved during hydrate dissociation in the metals-grafted carbon nanotubes nanofluids. Hence, the metal nanoparticles-grafted CNTs could facilitate both high storage capacity in the rapid hydrate formation and high methane recovery, which is of great significance to the application of hydrate-based technologies in efficient energy storage and utilization.

Keywords: Methane hydrates; Metals grafted-carbon nanotubes; Formation enhancement; Gas storage capacity; Methane recovery (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918306305
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:224:y:2018:i:c:p:175-183

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.04.068

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:175-183