EconPapers    
Economics at your fingertips  
 

Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach

Bailian Chen, Dylan R. Harp, Youzuo Lin, Elizabeth H. Keating and Rajesh J. Pawar

Applied Energy, 2018, vol. 225, issue C, 332-345

Abstract: Monitoring is a crucial aspect of geologic carbon dioxide (CO2) sequestration risk management. Effective monitoring is critical to ensure CO2 is safely and permanently stored throughout the life-cycle of a geologic CO2 sequestration project. Effective monitoring involves deciding: (i) where is the optimal location to place the monitoring well(s), and (ii) what type of data (pressure, temperature, CO2 saturation, etc.) should be measured taking into consideration the uncertainties at geologic sequestration sites. We have developed a filtering-based data assimilation procedure to design effective monitoring approaches. To reduce the computational cost of the filtering-based data assimilation process, a machine-learning algorithm: Multivariate Adaptive Regression Splines is used to derive computationally efficient reduced order models from results of full-physics numerical simulations of CO2 injection in saline aquifer and subsequent multi-phase fluid flow. We use example scenarios of CO2 leakage through legacy wellbore and demonstrate a monitoring strategy can be selected with the aim of reducing uncertainty in metrics related to CO2 leakage. We demonstrate the proposed framework with two synthetic examples: a simple validation case and a more complicated case including multiple monitoring wells. The examples demonstrate that the proposed approach can be effective in developing monitoring approaches that take into consideration uncertainties.

Keywords: Geologic carbon sequestration; Monitoring design; Machine learning; Reduced order model; Data assimilation; Uncertainty reduction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918307372
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:332-345

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.05.044

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:332-345