Assessment of energy flows and energy efficiencies in integrated catalytic adsorption steam gasification for hydrogen production
Zakir Khan,
Suzana Yusup,
Prashant Kamble,
Muhammad Naqvi and
Ian Watson
Applied Energy, 2018, vol. 225, issue C, 346-355
Abstract:
This study addresses the energy flows and energy efficiency of integrated catalytic adsorption biomass steam gasification for hydrogen production in a pilot scale bubbling fluidized bed system utilizing palm kernel shell as feedstock. The integrated catalytic adsorption utilizes catalyst and CO2 adsorbent together in the single fluidized bed gasifier. Various variables such as effect of temperature (600–750 °C), steam to biomass ratio (1.5–2.5 w/w), adsorbent to biomass ratio (0.5–1.5 w/w), fluidization velocity (0.15–0.26 m/s) and biomass particle size (0.355–0.500 to 1.0–2.0 mm) are investigated. The results imply that the overall requirement of gasification energy increases with increasing gasification temperature, steam to biomass ratio, fluidization velocity, and decreases with adsorbent to biomass ratio whilst no significant increase is observed by varying the biomass particle size. However, a slight reduction in required energy is observed from 600 °C to 675 °C which might be due to strong CO2 adsorption, an exothermic reaction, and contributes to the energy requirements of the process. Besides, hydrogen-based energy efficiencies increase with increasing temperature while first increases to a medium value of steam to biomass ratio (2.0), adsorbent to biomass ratio (1.0) and fluidization velocity (0.21 m/s) followed by a slight decrease (or remains unchanged). The integrated catalytic adsorption steam gasification is found to be a high energy consuming process and thus, waste heat integration needs to be implemented for feasible hydrogen production.
Keywords: Energy flow; Energy efficiency; Hydrogen; Fluidized bed; Integrated; Steam gasification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918307104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:346-355
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.05.020
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().