Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation
Taixiu Liu,
Qibin Liu,
Jing Lei,
Jun Sui and
Hongguang Jin
Applied Energy, 2018, vol. 225, issue C, 380-391
Abstract:
A new solar-hybrid fuel-fired distributed energy system incorporating thermochemical reaction driven by mid- and low-temperature solar heat and exhaust heat is proposed, for increased solar energy utilization and exhaust heat recovery efficiency. Solar energy is upgraded to syngas (H2 and CO) chemical energy via the solar thermochemical process of the methanol decomposition reaction, and the syngas drives the internal combustion engine to output power. Some of the exhaust heat is stored and drives the methanol decomposition reaction to supplement the syngas via the chemical recuperation process, enhancing the exergy efficiency of the exhaust heat recovery. The overall energy efficiency and net efficiency of solar energy to electricity conversion are improved by integrating solar thermochemistry and chemical recuperation, and excellent off-design thermodynamic performance under varying user loads and solar irradiation levels is achieved. The overall energy efficiency, exergy efficiency, and net solar-energy-to-electricity efficiency reach 80.55%, 42.18% and 24.66%, respectively. These research findings indicate that the proposed system embodies an efficient and stable approach towards utilization of solar energy and clean fuel in distributed energy systems.
Keywords: CCHP; Solar thermochemical reaction; Solar energy; Chemical recuperation; Energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261918306640
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:225:y:2018:i:c:p:380-391
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2018.04.133
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().